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ABSTRACT: Current and anticipated traffic management systems and traveller information systems require
extensive data reflecting current network traffic conditions. Unfortunately, agencies providing these ATMS and
ATIS services will likely be required to rely on traffic data obtained from different data sources and surveillance

methods, such as loop detectors, probe vehicles, driver reports, video camera monitoring, etc.

This paper

proposes several models for estimating link travel times on the basis of individual data sources (i.e. detectors,
probe vehicles, and driver reports) and proposes a framework for combining traffic data from various sources

into a single link travel time data base

1 INTRODUCTION

In most large urban centres in North America,
Ministries and Departments of Transportation operate
several different traffic monitoring systems. Typical
systems include dual-loop detectors installed on
freeways, single-loop detectors at actuated and semi-
actuated signals, video surveillance cameras, driver
based reports (e.g. cellular phone calls), emergency
personnel, automatic vehicle location systems on
fleet vehicles such as public transit buses, and
automatic vehicle identification tags such as those
used for electronic tolling. Each of these systems
provides a unique stream of traffic surveillance data
that is incomplete in time (does not provide data
continuously) and/or space (does not provide data for
the entire network). Therefore, it would be expected
that if the data sources were combined in a
systematic fashion, that more accurate and complete
knowledge of network traffic conditions would result.
The challenge is how to conduct this data fusion in a
statistically sound manner, while also meeting the
constraints and limitation likely to be encountered
with actual field implementation.

1.1 Background

Previous research has been conducted to examine
the accuracy and reliability of various traffic data
sources (for example, Hellinga, 1998; Hellinga and
Van Aerde, 1994; Hellinga and Fu, 1999). These
studies have generally examined the reliability of
population measures (e.g. O-D demands, link travel
times) estimated from samples from a single traffic
data source (e.g. probe vehicles). While these studies
provide insights into the reliability of the examined
data sources, they have not addressed the problem of
combining different data in an effort to make better
population estimates.

A review of the literature indicates that only a limited
number of studies have been conducted in which the
issue of data fusion has been explicitly addressed.
Two of these studies (Tarko and Rouphail, 1993;
Nelson and Palacharla, 1993) relate to work
conducted as part of the ADVANCE project in
Chicago. In this work, estimates of average link travel
time are made on the basis of Bayesian updating.
Data from probe vehicles and from detectors were
combined with historical data to estimate the current
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Figure 1: Data fusion framework

average link travel time. Tarko and Rouphail propose
a regression-based approach for estimating 15-
minute average link travel times on the basis of
measured detector occupancy. A limitation of their
proposed approach is that a separate regression
model must be calibrated for each arterial link in the
network. Calibration can only be done for links for
which actual link travel times can be obtained.
Furthermore, the evaluation of the accuracy of their
regression models was conducted only for
undersaturated traffic conditions.
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1.2 Research Approach

This paper describes a prototype data fusion system
that can integrate information from loop detectors,
probe vehicles, and driver-based linguistic reports
(e.g. cellular phone reports) to provide a time-varying
estimate of link travel times for the entire traffic
network. A sub-model has been developed for each
individual data source to transform the incoming data
into an estimate of link travel time. These link travel
time estimates are then combined to provide a
composite estimate.

This paper describes the system and the
development of each sub model. Evaluation results
for each sub model are presented and examined.
These preliminary results are used to make
recommendations for changes to the sub models and
the evaluation process.

2. PROPOSED DATA FUSION SYSTEM

The proposed data fusion system consists of four
main elements, as illustrated in Figure 1. Each
unique data source is used as input to a sub-model,
which then makes an estimate of average link travel
time on the basis of the input data. The output
streams from each sub-model are used as input to the
data fusion sub-model, which estimates a composite
average link travel time for each link in the network.

It is this composite travel time estimate that would be
used to support traffic management decisions and/or
as the basis for traveller information reports.

The following sections describe each of the sub-
models.

2.1 Loop Detector Sub-Model

The loop detector sub-model makes an estimate of
the link travel time on the basis of point
measurements of speed, volume, and occupancy.
Separate models have been developed for arterial
links (arterial sub-model) and for freeway links
(freeway sub-model).

Freeway Loop Detector Sub-Model

Loop detectors provide measurements of volume and
occupancy, and in the case of dual-loop detectors,
speed. For freeway traffic monitoring, loop detectors
are typically installed with a spacing of approximately
600m. The availability of detector stations at regular
intervals permits the roadway to be segmented, with
the boundary of each segment begin located midway
between adjacent loop detector stations. Thus, if a
freeway has detector stations spaced every 600m,
roadway segments would also be 600m in length, with
the segment boundaries located 300m to either side
of each detector.

The proposed freeway detector sub-model estimates
roadway segment travel time on the basis of
measured point speed and the length of each
roadway segment (Equation 1).
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Where:
ty = estimated travel time on freeway link (sec)
Li = length of roadway segment associated with
detector i (km)
Si= speed measured at detector i (km/h)
n = number of detectors on freeway link

The validity of this model was tested using data
generated by the Integration traffic simulation model
(Van Aerde, 1999). A simple freeway section (Figure
2) with a capacity bottleneck was simulated for 6
different traffic demand levels (D = 2500, 3000, 3500,
3750, 4000, 4250 vph). A capacity of 2000 vphpl was
assumed. Each demand level was simulated for 5000
seconds. As the traffic demand approached the
bottleneck capacity of 4000 vph, a queue formed
upstream of the lane drop. The time required to
traverse the 3-lane section of the freeway (i.e. 1.2km)
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Figure 2: Freeway simulation network

| D=2500 vph
0D=3000 vph
4D=3500 vph
% D=3750 vph
+D=4000 vph
0 D=4250 vph

8

ec)

100

Estimated Travel Time (s

0 20 40 60 80 100 120 140 160 180
Simulated Link Travel Time (sec)

Figure 3: Estimated versus observed travel times for
a freeway application (aggregation period =60s)

was recorded for each vehicle. These travel times
were aggregated for four separate durations, namely
60s, 100s, 300s, and 900s. Figure 3 illustrates the
correlation between the travel times estimated using
Equation 1, and those observed from the simulation
model for an aggregation period duration of 60
seconds. The overall correlation is computed as
0.89, however, the results in Figure 3 indicate that
Equation 1 tends to underestimate the travel time as
travel time increases. Further investigation of the
simulation results indicated that a small proportion of
vehicles travelling in the shoulder lane experienced
very high delay as they attempted to merge into the
adjacent lane. This is illustrated in Figure 4, in which
the individual vehicle travel times are presented
along with the mean link travel time. The microscopic
lane changing behaviour of vehicles, that results in
the very large delays, appears to be unrealistic,
however, since no field data were available, no
guantitative analysis was carried out to support or
refute this conclusion. Nevertheless, these delayed
vehicles tended to significantly increase the mean link
travel time, often without a corresponding decrease in
the mean detector speed. It is speculated that the
tendency for Equation 1 to underestimate travel time
under heavily congested situations is largely a result
of this characteristic of the simulation model.
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Figure 4: Comparison of individual travel time and
mean travel time for a freeway application

Arterial Loop Detector Sub-Model

Unlike a freeway link, a link that is controlled by a
traffic signal is subject to periodic changes in capacity
as the traffic signal cycles through the red and green
intervals. These changes in capacity result in the
formation and subsequent dissipation of queues. The
information provided by a loop detector located on a
signal approach link is dependent on the detector's
location relative to the stop line and the behaviour of
the queue. If the queue does not spill back over the
detector, then the measured volume represents the
traffic demand and the measured speed represents
the speed at which vehicles travel when not in queue.
However, if the queue spills back over the detector,
then the measured volume reflects capacity of the
signal rather than demand and the measured speed
represents the speed of travel for vehicles in the
gueue. Therefore, whatever detector measurement is
used (i.e. speed, volume, or occupancy), the
interpretation of the data is dependent on the detector
location relative to the intersection stop line.

A number of other researchers have also examined
the problem of estimating arterial link travel time from
detector data. In one of the earliest research efforts,
Gipps (1977) used detector occupancy and arrival
time at the detector to develop regression estimates
of link travel time based on simulated data. Gault
(Gault and Taylor, 1981; Gault, 1981) improved
Gipps' initial model and observed a linear relationship
between travel time and detector occupancy up to
occupancies of approximately 70 percent. She chose
to ignore higher occupancies and formulated a model
which reflected the effects of occupancy levels, cruise
time, degree of saturation, and signal settings on link
travel time.

We adopted a similar approach in our work in that we
used a calibrated regression model to estimate link
travel time on the basis of detector location and
measured detector occupancy. It is likely that under
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Figure 5: Arterial delay as a function of detector
occupancy and location (300-second aggregation)

field conditions, signal control parameters would not
be know and therefore we did not include these as
independent variables within our regression model,
even though these would likely have significant
explanatory power. Data for calibration was generated
using the Integration traffic simulation model. A
signalised approach roadway was simulated for a
variety of traffic demands (D = 200, 500, 700, 950,
1050, 1100). Demands entered the roadway with
exponentially distributed headways. The network
consisted of a single lane roadway controlled by a 2-
phase traffic signal with a cycle length of 100 seconds
and a g/c ratio of 0.6. The link was assumed to have
a saturation flow rate of 1800 vph and a free speed of
60 km/h. A loop detector was modelled at 4 different
locations (x = 5, 30, 100, 250m from the stop line).
Three different data aggregation intervals were
considered (d = 100, 300, 900 seconds).

Figure 5 depicts delay (ty) as a function of detector
occupancy and detector position for a 300-second
aggregation period. These data illustrate the highly
non-linear relationship between link delay, detector
occupancy, and detector position.

For each level of aggregation, a regression model of
the form provided in Equation 2 was calibrated to the
simulation data. The best model was found to be the
one obtained for the 900-second level of aggregation
with an adjusted R® of 0.84. We chose to estimate
link delay (ty) rather than link travel time because
delay is primarily a function of signal control impact
and is independent of link length. Therefore, we can
use the same calibration regression equation for all
signalised arterials, regardless of the length of the
link. The estimated link travel time can be computed
using Equation 3.
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Figure 6: Estimated versus observed arterial link
travel times (900-second aggregation)

ty = link delay time (sec) defined as the different
between travel time on link and the free speed
travel time on link

K = detector occupancy (%)

x = detector location measured from the stop line

(m)
a; = regression coefficient
t, =t +1 3)
Where:
ty = estimated link travel (sec)
tr = free speed link travel time (sec)

The correlation between the link delay (ty) estimates
provided by Equation 2 and those produced by the
simulation model is illustrated in Figure 6.

2.2 Probe Vehicle Sub-Model

Probe vehicles are vehicles that can be uniquely
identified by roadside equipment, such that vehicle
identification at two different locations along a
roadway enables the travel time of that particular
vehicle to be measured. Generally, vehicle
identification is made through the use of short-range
communication hardware such as the toll tag
technology used for electronic tolling on Highway 407
in Toronto. Other means of uniquely identifying
vehicles are also possible, including automatic
license plate recognition systems. For the purposes
of this research, probe vehicle are those vehicle for
which link travel time data can be obtained.
Furthermore, it is assumed that this link travel time
information is obtained only when the vehicle exits a
link.

A significant amount of research has been conducted
to evaluate the accuracy of population estimates
made on the basis of a sample of observation as
obtained from probe vehicle reports. The literature



describes efforts to quantify the level of market
penetration required to achieve desired level of
reliability in population origin-destination traffic
demands and link travel times (Hellinga and Van
Aerde, 1994; Van Aerde et al., 1993; Hellinga and Fu,
1999). Some of this research (Hellinga and Fu, 1999)
has demonstrated that under certain conditions, probe
travel times provide a biased estimate of the
population travel times. More recently Hellinga and
Fu (2000) have proposed a method of determining
when this bias is present and of reducing the
magnitude of this bias.

The probe report sub-model in this research makes
use of these previously developed techniques.

2.3 Driver Report Sub-Model

Driver reports are linguistic reports that are provided
by a driver and are initiated by the driver. Note that in
this research we do not distinguish between a report
provided by a driver and one provided by a passenger
in the vehicle. We refer to all linguistic reports made
by an occupant of a vehicle as a driver report. Using
driver-based reports to obtain traffic network
information is quite different from using loop
detectors or probe vehicles. Driver reports are unique
in two specific ways, namely the driver initiates driver
reports, and driver reports are linguistic. These two
characteristics are discussed in more detail below.

Initiation of Driver Reports

Driver reports are initiated by the driver, and therefore
data can only be obtained when drivers decide to
provide them. Furthermore, only drivers with some
means of wireless communication (e.g. cellular
phone) are able to provide a report. Thus, the
availability of driver reports depends on many factors,
including the number of vehicles passing a given
location, the proportion of drivers with wireless
communication access, and the likelihood that a
driver with wireless communication access will initiate
a report. Very little research has been conducted to
determine the probability that a driver, with access to
wireless communication, will initiate a report. It is
likely that this probability is not constant, but is also a
function of the traffic conditions that the driver is
experiencing, and their knowledge of whether or not
the authorities (or current traffic information providers
such as radio stations) are already aware of
unexpected traffic conditions. In this current
research, we do not attempt to directly address this
guestion, rather we attempt to quantify the value of
driver reports under several assumptions about driver
reporting behaviour.
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Figure 7: Family of probability functions for drivers
with wireless communication abilities making a report

We have assumed that the probability that drivers
with cell phones will make a report is dependent on
the degree of congestion they are currently
experiencing (Equation 4). The probability that a
driver has access to wireless communication is
assumed to be constant.

P(report) =1- e*®*>F 4)

Where:

P(report) = Probability, that a driver with a cell
phone make a report

Calibration parameters

Ratio of current link travel time to free
speed link travel time

Each time a vehicle exits a link, a check is made to
determine if it is equipped with wireless
communication equipment. If it is, then Equation 4 is
used to determine the likelihood that the driver will
initiate a report. The form of Equation 4 enables a
wide range of probability distributions to be created
depending on the choice of values for parameters a,
b, and g Figure 7 illustrates four example
distributions. We make no attempt at this point to
recommend values for a, b, and g since we do not
have any field data on which to base such a
recommendation. For purposes of demonstrating the
data fusion process, we examine a limited range of
parameter values.

a;b;g
R

Modelling Imprecision in Driver Reports

Driver reports are linguistic and often qualitative,
rather than numerical and quantitative. For example,
a driver may report that the road on which she is
travelling is severely congested. While this
description contains useful information pertaining to
the state of the traffic network at the specified
location and time, there is some uncertainty
associated with the precise meaning of the term
"severely congestion”. Does this mean a speed of 10
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Figure 8: Membership function definition for speed on
arterial roadways

km/h or a speed of 30 km/h? Driver reports require
that the linguistic report be interpreted and translated
into some quantitative descriptor.

The Driver Report sub-model is built on the
assumption that driver linguistic reports are inherently
imprecise in their description of traffic condition.
Following this assumption, we formulated a fuzzy
logic rule-based model for estimating delay as a
function of driver reports. We assume that in addition
to providing location, drivers are able to provide an
estimate of one or more of the following; speed on the
link (km/h), length of a queue (km), severity of an
incident (in terms of the number of effective lanes
blocked), time remaining before an incident is
cleared, and current traffic demand. Drivers only
report those traffic conditions that are relevant to their
particular situation. For example, if a driver is in a
gueue and has initiated a call, she could report her
average speed and some estimate of the queue
length, but would not report on the severity of an
incident or the expected time remaining for an
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Figure 10: Delay estimation error by data source

each rule are aggregated and an estimate or delay IS
obtained by computing the centroid of the aggregated
membership shape. Figure 9 illustrates this process
when only two rules are applied.

3. EVALUATION OF SUB-MODELS

3.1 Evaluation Network

An arterial corridor with three signalised intersections
and one stop controlled intersection was simulated
using Integration. Loop detectors were placed at
random locations on all links. A level of market
penetration of 10% was assumed for probe vehicles.
It was assumed that 70% of drivers had cell phones
and these drivers could make reports when
necessary. The network was simulated for 25
minutes. Average link delay (i.e. travel time - free
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Figure 9: lllustration of Mamdani's fuzzy logic inference system



speed travel time) was estimated from each data
source (i.e. detectors, probes, and driver reports) for
5-minute periods. Thirteen links were randomly
selected from the network for analysis.

3.2 Results

Figure 10 indicates the root-mean-squared error
(RMSE) associated with each of the link delay
estimation sub-models. In each case, the RMSE is
computed across the thirteen links and the five 5-
minute estimation periods. As a reference, it can be
noted that the true average delay computed for all
links is 73 seconds. From these results, it is apparent
that the delay estimates provided by the probe
vehicles are the most accurate, but that even these
estimates have a RMSE of 19 seconds or 26% of the
mean link delay. Figure 11 illustrates the correlation
between the individual link delay estimates and the
actual link delay. It is evident from this figure that
under some conditions, the driver report sub-model
estimates a very large delay, when the true delay is
quite small and under other conditions, estimates a
very small delay when the true delay is very large.
These results seem to indicate that the current fuzzy
logic sub-model is inadequate for use in estimate link
delays.

4. CONCLUSIONS AND
RECOMMENDATIONS

ATMS and ATIS require the availability of accurate
and reliable network traffic data. In most urban
centres, multiple sources of traffic data exist, offering
different spatial and temporal coverage.

It is expected that the simultaneous consideration of
all available data sources would provide a more
accurate description of network traffic conditions than
the reliance on only a single data source.

One means of combing disparate data sources is to
estimate a common traffic condition metric from each
individual data source and then to compute a
composite metric on the basis of some systematic
combination of the individual data source metrics.

Non-linear regression appears to be an adequate
method of estimating arterial link delay on the basis
of detector data. Utilising speed data from detectors
on freeways enables travel times to be estimated for
short roadway segments (i.e. in the range of 600m).

A fuzzy logic model was proposed for estimating of
link delay from linguistic driver reports. Preliminary
results from testing this rule-based model on
simulated arterial link data indicate that the model
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Figure 11: Estimated versus actual average arterial
link delay

can lead to highly inaccurate estimates of link delay.
It is recommended that further testing of the fuzzy
model be undertaken to determine the cause for
these large estimation errors. It may be necessary to
modify or add rules or to modify the current fuzzy
membership functions.

It is also recommended that testing of the proposed
sub-models be carried out over a much wider range
of traffic and signal control conditions.
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